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The main motivation behind this study is to understand the interplay between the reactions and transport in
a geometries that are not compact. Typical examples of compact geometries are a box or a sphere. A network
made of containers C1 ,C2 ,… ,CN and tubes is an example of the space that is structured and noncompact. In
containers, particles react with the rate �. Tubes connecting containers allow for the exchange of chemicals
with the transport rate D. A situation is considered where a number of reactants is small and kinetics is noise
dominated. A method is presented that can be used to calculate the average and higher moments of the reaction
time. A number of different chemical reactions are studied and their performance compared in various ways.
Two schemes are discussed in general, the reaction on a fixed geometry ensemble �ROGE� and the geometry
on a fixed reaction ensemble, examples are given in the ROGE case. The most important findings are as
follows. �i� There is a large number of reactions that run faster in a networklike geometry. Such reactions
contain antagonistic catalytic influences in the intermediate stages of a reaction scheme that are best dealt with
in a networklike structure. �ii� Antagonistic catalytic influences are hard to identify since they are strongly
connected to the pattern of injected molecules �inject pattern� and depend on the choice of molecules that have
to be synthesized at the end �task pattern�. �iii� The reaction time depends strongly on the details of the inject
and task patterns.
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I. INTRODUCTION

The goal of the present study is to impact some progress
in understanding the interplay between the reactions and
transport in structured spaces. There are many questions one
could ask. This study focuses on two. First, assuming that the
spatial structure is fixed, which reaction scheme would draw
the most benefit from it, for example, in terms of speed
�smaller execution time� or better timing �reduction of noise
level�? Second, given the chemical reaction, what is the to-
pology that is mostly suited for it?

The situation considered here is shown in Fig. 1. The goal
is to investigate the setup where reactions happen in the spe-
cific regions of space and reactants move among these re-
gions. The simplest way of achieving such a setup is to con-
sider the chemical reactions in containers that are connected
by tubes, as shown in the figure.

The particular model proposed here is influenced by sev-
eral lines of research. The setup of the reaction schemes is
inspired by the work done on the prebiotic evolution,
genome-based evolution and random reaction networks
�1–8�, and diffusion-controlled reactions in the bulk phase
�9–14� and in restricted geometries �15–18�. The geometrical
setup of the model is motivated by the experimental studies
given in Refs. �19–25� and the theoretical study of the
reaction-diffusion neuron and enzymatic neuron �26–32�.

For simplicity reasons, the details, of both the chemical
reactions and transport, are neglected to a large extent. It is
assumed that reactants are pointlike objects with no struc-
ture. The two most important time scales are traced in the
model. The reaction rate � describes how fast molecules re-

act in containers. The transport rate D governs the exchange
of the chemicals among containers. In order to gain some
understanding of the differences between the compact and
structured geometries, depicted in panels �a� and �b� of Fig.
1, one simply has to study variations of a reaction dynamics
in the networklike structure �c� as the transport rate changes
from D�� toward D��. This is the main idea of the paper.

To understand in which ways a particular shape of the
reaction volume influences the chemical kinetics �and vise
versa� a large number of chemical reactions are compared.
Two ensembles are discussed in general. In the first case, the
reaction scheme is kept fixed, while the geometry of the
network is allowed to change. This type of ensemble will be
referred to as the geometry on the �fixed� reaction ensemble
�GORE�. The geometries are different and they are sampled
by changing the size of the containers and the length of the
tubes. In the second case the geometry of the network is kept
fixed, while the reaction scheme is subject to a change. This
type of the ensemble will be referred to as the reaction on the
�fixed� geometry ensemble �ROGE�. Examples will be given
for the ROGE case only.

What is the measure of the good performance for a chemi-
cal reaction? In here, the focus will be on the time related
issues such as the length of the catalytic cycles. The setup
presented here allows for the consideration of other perfor-
mance criteria but these are omitted due to the simplicity
reasons. The time needed for a reaction to finish, T, is a
stochastic variable. All information about T is obtained in the
distribution function ��t� that describes its statistics. In prac-
tice it is very hard to find ��t� for a general reaction scheme.
It is more fruitful to characterize ��t� in terms of a few
variables and in this work we use the average �=�0

�t��t�dt.
The paper is organized as follows. In Secs. II and III the
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PHYSICAL REVIEW E 72, 011917 �2005�

1539-3755/2005/72�1�/011917�9�/$23.00 ©2005 The American Physical Society011917-1

http://dx.doi.org/10.1103/PhysRevE.72.011917


an overview of the methods for solving the master equation
is given. The method of doing a computer simulation is re-
viewed first. The method of finding moments of the time
length of the catalytic cycles is discussed in detail in the Sec.
V. A few simple reactions are discussed in Sec. VI where it is
shown how to compare vastly different reaction schemes.
Section VII contains analysis of the ROGE ensemble made
from a two container network, two particle types, all possible
reactions, and a full set of inject-task patterns. The conclu-
sions and outlook are given in Sec. VIII.

II. REACTIONS OCCUR IN A NETWORK STRUCTURE

The reaction-diffusion model is defined as follows. Con-
sider the set of containers Ci connected in a particular way
by tubes with lengths li,j; i,j=1,… ,N. It is possible that
some containers are not connected. An example of such a
structure is given in Fig. 1. The containers harbor molecules
X�; �=1,2 ,… ,M. Molecules are allowed to react only when
in the same container �provided there is a reaction they par-
ticipate in� with the rate �. Molecule X� moves from con-
tainer Ci to container Cj with a rate of Dij

�. For simplicity
reasons it is assumed that Dij

� =D if the link between con-
tainer i and j exists and equals zero otherwise.

It is very common to model diffusion-controlled reactions
by using a similar type of dynamics. Instead of the network

structure one uses regular lattice, for reviews see Refs.
�9–14�. The lattice models have the three most important
characteristics: the lattice is a highly regular structure �num-
ber of neighbors is well defined�, infinite lattices are of the
major concern, and when the lattice size gets large the cal-
culations become technical and only simple models can be
solved. Here, the focus is on highly irregular, small net-
works, with more complicated reaction schemes.

Structures like the ones shown in Fig. 1 can be found in
the interior of the living cells. A few examples are golgi,
mitochondria, and endoplasmic reticulum. Mapping is not
exact, but there is a rough similarity. In the living cell N can
vary from few containers �protein complexes�, towards val-
ues that are in between 10 and 100 �golgi, mitochondrion�.
Also, the number of the molecule types M can be very few
towards very large numbers of the order of 100 or more.
Please see Refs. �33–36� for additional details.

With assumptions at hand, to describe the system at any
time instant, it is sufficient to track the number of particles in
each container. The conformation of system c is specified as
an occupancy of the containers

c = �n1,…,ni,…,nN� , �1�

where vectors ni i=1,… ,N describe the particle content of
each container

ni = �n1,i,…,n�,i,…,nM,i� �2�

with n�,i=0,1 ,2 ,… ,� for �=1,… ,M and i=1,… ,N. The
system makes random transitions between various configu-
rations.

For computational convenience, the very simple type of a
reaction scheme will be considered

X�→
±X�

X	. �3�

The reaction graph is specified by the reactivity matrix �. If
reaction X�→X	 is allowed 
�,	=1 and equals zero other-
wise. The catalysis information is stored into matrix K�,	
where K�,	= ±� if X� is catalyst �+� or inhibitor �−� for X�

→X	 reaction. K�,	=0 indicates that the reaction does not
have a catalyst nor an inhibitor.

The reaction rate for the reaction X�→X	 in container Ci
is given by

��,	
i �ni� = �
�,	�

1 � = 0

� �  0, n�,i  ��,�

1

�
� � 0, n���,i  ����,�.	 �4�

��,	 is a Kronecker delta function, �1 denotes the catalysis
enhancement factor, and �=K�,	. The condition n�,i��,�
ensures that there is no self catalysis for a reaction of the
type

X�→
X�

X	 �5�

when there is only one X� present in the container. One
needs at least two X� in order to feel catalytic influence of X�

on the reaction given in �5�.

FIG. 1. The goal is to understand how reaction dynamics alters
when geometry of the system changes from compact, shown in
panel �a�, toward noncompact �structured�, shown in panel �b�. This
can be done by studying one system, depicted in panel �c�. Panel �c�
shows how to model geometry in panel �b� in terms of network
consisting of containers and tubes. When D�� the reaction dynam-
ics in panels �b� and �c� should exhibit some similarities. For D
�� one expects the same for the structures �a� and �c�.
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III. REACTION TIME CAN BE DEFINED
BY INTRODUCING INJECT AND TASK PATTERNS

The most general reaction graph one can consider is
shown in Fig. 2. The graph indicates that cell machinery
converts molecules X1 ,… ,X� into molecules X1� ,X2� ,… ,X�� .
The shaded area in the middle denotes the intermediate re-
action steps that involve an arbitrary set of reactions between
the molecules already shown in the graph. An additional par-
ticle types may appear in the shaded region. It is possible to
define the speed of a reaction as the time needed for the
predetermined set of output molecules X1� ,X2� ,… ,X�� to ap-
pear, provided only the input molecules were present initially
in the system.

In addition to the reaction scheme given in Eq. �3� one has
to specify

� = ��1,�2,…,���, � = ��1,�2,…,��� . �6�

The vector � contains a list of molecules injected, their num-
ber, and the location �container� where they are inserted into
the system. � defines a list of tasks indicating which mol-
ecules should be synthesized, how many, and in which con-
tainer they should appear.

Every time a certain task is accomplished the time when
this happens is stored. These times are arranged in the vector

T = �T1,T2,…,T�� �7�

and there is a one to one correspondence between the ele-
ments of � and T. The vector T is a stochastic variable and
can be described in terms of the distribution function
��t1 , t2 ,… , tn ;� ,��.

Once the task is achieved molecules that were used to
accomplish it are removed from the system. This consider-
ation is motivated by the character of the real processes in
the living cell. A typical example is the conversion of the
substrate molecule through action of an enzyme �e.g., as in
the citric acid cycle in mitochondria� �34�. Also, the mol-
ecule removal couples tasks and ��t1 , t2 ,… , tn ; � ,�� cannot

be factorized into �1�t1��2�t2�¯�n�tn�. This implies that
whole set of tasks should be considered as one entity. This
adds a different dimension into the dynamics.

In practice, it is very hard to obtain a full distribution
function and it is more convenient to characterize it in terms
of the few lowest moments. In this work we use the average

� = ��1,…,�k,…,�n� . �8�

One could also use the variance but this is not done at the
moment.

The quadruple consisting of a particular reaction scheme
��, �, �, and K�, network geometry �li,ji, j=1,… ,N�, inject
pattern �, and list of tasks monitored �, will be referred to as
an organism. The organism can be seen as the entity that has
to transform a certain number of chemicals into a set of
molecules that have to be synthesized at certain places, uti-
lizing the available reaction scheme and geometry.

IV. THE MASTER EQUATION IS SOLVED BY COMPUTER
SIMULATION AND MOMENT METHOD

The dynamics of the system defined in the previous sec-
tion is stochastic and from the rules discussed one can derive
a master equation that describes the time evolution of the
occupation probabilities p�c , t�,

ṗ�c,t� = 

c�

Rc,c�p�c�,t� − 

c�

Rc�cp�c,t� , �9�

where here and in the following the dot over symbol denotes
time derivative. The reaction rates Rc�c for c→c� transition
can be easily calculated from the definition of the model.
Two numerical strategies are used to solve Eq. �9�, the simu-
lation method and procedure developed in here to calculate
various moments of the ��t1 ,… , tn ;� ,��.

A. Computer simulation

The master equation is solved by using a minimal process
algorithm suggested by Gillespie �37,38�. Given that at the
time t the system is in the conformation c the following
processes can happen. Transport of particle X� from Ci to Cj
occurs with rates

Ri,j
� �c� = Di,j

� n�,i, � = 1,2,…,M, i, j = 1,…,N �10�

or reactions within containers with rates

R�,	
i �c� = ��,	

i �ni�n�,i. �11�

One also needs the total reaction rate

Q�c� = 

i,j=1

N



�=1

M

Ri,j
� �c� + 


i=1

N



�,	=1

M

R�,	
i �c� �12�

which is used to sample the waiting time �t=−ln�1−r� /Q
where r is a random number drawn uniformly from the in-
terval �0, 1�. The probabilities for the process to happen are
given by

pi,j
� =

Ri,j
� �c�
Q

, � = 1,…,M, i, j = 1,…,N , �13�

FIG. 2. The most general form of a reaction graph
considered.
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p�,	
i =

R�,	
i �c�
Q

, i = 1,…,N, �,	 = 1,…,M . �14�

A process is chosen using the linear selection algorithm:
First, a random number r� is drawn. After that, the cumulant
probabilities are calculated through the loop over all pro-
cesses. The loop is stopped when the cumulant probability
exceeds r� and the last process for which this happened is
executed.

B. Moment method

This method relies on the matrix representation of the
master equation �9� and cannot be used to treat cases with a
large number of containers and particle types �the size of the
configuration space grows exponentially�. However, the
method is exact and should be used when there are enough
computation resources. The method is developed in the fol-
lowing section.

V. THE CALCULATION OF THE REACTION TIME
MOMENTS

It will be shown how to calculate the moments of the
individual components of �, �k

�p�����k�p, k=1,… ,� and p
=0,1 ,2 ,… ,�, where

�k
�p���,�� = �

0

�

tp�k�t;�,��dt . �15�

�k�t ;� ,�� denotes integrated distribution function for task
�k,

�k�t;�,�� � �
0

�

��t1,…,tn;�,�� �
m=1,�

m�k

dtm. �16�

Please note that the accomplishment of each individual task
is influenced by the presence of others since the particles
vanish upon the accomplishment of various tasks, and both
the index of the task �k� and the full list of tasks being
monitored ��� have to be specified.

It is possible to find a closed expression for the Laplace
transform of �k�t ;� ,��. The Laplace transform of arbitrary
function F�t� is defined as F�s���0

�exp�−st�F�t�dt.
�k�s ;� ,�� is given by

�k�s;�,�� = 

c��

w�c,�k�g�s;�,c,��

+ 

m=1,�

m�k



c��

w�c,�m�g�s;�,c,��

� �k�s;c/�m,�/�m� , �17�

where the notation used is as follows. The w�c ,�k� equals
one if the task �k can be accomplished once the system
arrives in the state c, and equals zero otherwise. In the fol-
lowing, by definition, a state for which one of the w�c ,�k�
with k=1,… ,� differs from zero will be referred to as a
window state. Through the window state tasks can be accom-

plished. c /�m denotes the state immediately after the par-
ticles have been taken away once the task �m was accom-
plished. Likewise, the symbol � /�m denotes a list of tasks
being monitored with task �m omitted ��1 ,… ,�m−1,
�m+1 ,… ,���. g�s ;� ,c ,�� is a distribution function for the
first passage time into the state c given that the dynamics
started from the state �. Figure 3 is a schematic presentation
of the Eq. �17�. Please note that Eq. �17� defines �k�s ;� ,��
recursively. The number of tasks on the right-hand side of
Eq. �17� is smaller by one than the same number on the
left-hand side of the equation. When the list of a task is
empty �=�0 and �0�� �. The condition �k�s ;� ,�0�=0
stops the recursion.

The Laplace transform of the arrival time distribution
function g�t ;� ,c ,�� is calculated as follows. Given the par-
ticular reaction scheme it is possible to construct a master
equation �9� that governs the time dependence of the occu-
pation probabilities of each state p�c , t�, where c has to be
accessible from the initial state �. When calculating the ma-
trix of the transition rates R it is assumed that all window
states cannot be left once they are arrived into. Window
states are perfectly absorbing. Figure 3 is a graphic represen-
tation of this fact. Once p�c , t� is found from �9� the passage
time distribution function is given by g�t ,� ,c ,��= ṗ�c , t�.

It is useful to arrange both p�c , t� and g�s ;� ,c ,�� into a
vectors p�t� and g�t� where notation was simplified a bit
since we assume that � and � are known and fixed. It is
useful to rewrite master equation �9� in a matrix form as
ṗ�t�=Rp�t�. This equation is solved using the Laplace trans-
form, with initial condition p�c ,0�=�c,� �� denotes the Kro-
necker delta symbol�: sp�s�−p0=Rp�s�. Also, in the Laplace
transform space one has sp�s�−p0=g�s�, which directly leads
to the equation for the arrival time distribution function

FIG. 3. Panel �a�: The structure of the configuration space. Ini-
tially the system is in the state �. Three set of states are distin-
guished, a set of normal states Sn, a set of trap states St, and a set of
window states Sw. Panel �b�: graphical illustration of the partition-
ing algorithm.
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sg�s� = R�g�s� + p0� . �18�

In principle, the equation above could be solved as g�s�= �s
−R�−1p0. However, matrix R has zero eigenvalues and the
value of g�s� in the limit s→0 is ill defined. To avoid such
problems Eq. �18� has to be solved in a special way.

It is useful to separate configuration space into three
groups: a set of normal �nonwindow� states Sn, a set of trap
states St, and a set of window states Sw, as shown in Fig. 3.
The existence of the trap states is problem dependent. Once
the system arrives into these states there is no exit from this
space, though such states are not window states. This simply
means that it is possible that the set of tasks is never accom-
plished.

Using the partition of states shown in Fig. 3 leads to the
following set of equations:

sgn�s� = Rnn�gn�s� + pn,0� , �19�

sgt�s� = Rtn�gn�s� + pn,0� + Rttgt�s� , �20�

sgw�s� = Rwn�gn�s� + pn,0� . �21�

Please note that pt,0 and pw,0 are zero since, initially, the
system is in the state � and such a state does not have any
components in the St and Sw spaces. Given that there is no
transition from the trap states into the normal states or win-
dow states blocks Rnt and Rwt are missing in the equations
above. Likewise, blocks Rww, Rnw, and Rtw are zero since
there are no transitions among the window states, nor the
transitions from them.

Equation �19� can be solved first, leading to gn�s�= �s
−Rnn�−1pn,0 and inserting this expression into the Eq. �21�
gives

g�s,�,c,�� = �Rwn�s − Rnn�−1pn,0�c, c � Sw. �22�

Please note that Eq. �22� is well defined for all values of s.
In particular, in the limit s→0 even for a matrix R that has
zero eigenvalues. It is intuitively clear that, contrary to R,
matrix Rnn does not have zero eigenvalues: as time goes on,
all probability accumulates in Sw and St spaces �see Fig. 3�.

The only difficulty with Eq. �22� is the partitioning of the
full configuration space into Sn, Sw, and St. The algorithm for
carrying out such partitioning works as follows. Assuming
that the configuration space has been generated �Fig. 3, panel
�a�� one starts from the window states that are easy to iden-
tify. Assume that the graph is elastic. All the lines arriving
into the window states, together with the sites they are at-
tached to, are pulled into the window states, one by one.
Eventually, the whole graph collapses into the very simple
structure shown in panel �b�. All states that are drawn in the
pool of w1, w2, etc. form Sn and the states left form St.

Once g�s ,� ,c ,�� is found one can proceed with the cal-
culation of the moments �k

p�� ,��. These can be obtained by
taking derivatives of Eq. �17� with regard to s and setting s
=0 at the end: it can be seen easily from Eq. �15� that

�k
p��,�� = �− �plim

s→0
�s

p�k�s,�,�� , �23�

where �s denotes derivative over s. Using Eqs. �23� and �17�
leads to

�k
�p���,�� = 


c��

w�c,�k�g�p���,c,��

+ 

m=1,�

m�k



c��

w�c,�m� 

q=0,p

�p

q
�g�p���,c,���k

�p−q�

��c/�m,�/�m� . �24�

By definition, g�p��� ,c ,����−�p lims→0 �s
pg�s ,� ,c ,��, which

after using Eq. �22� leads to

g�p���,c,�� = �− ��p+1�p ! �RwnRnn
−�p+1�pn,0�c. �25�

Equations �24� and �25� are the central result of this sec-
tion. They determine all the moments. For example, once
�k

�p��� ,�� p=0,1 are found the average reaction times for
each task are given by

�k��,�� =
�k

�1���,��
�k

�0���,��
, �26�

where k=1,… ,�. The term �k
�0��� ,�� ensures that the statis-

tics is done only for instances where task was achieved. The
percentage of cases when this happened is given by
�k

�0��� ,��, which is either equal to or less than 1. The numeri-
cal implementation of Eqs. �24� and �25� is straightforward
and gives the exact values for �.

VI. ROGE ENSEMBLE: DESCRIBING PERFORMANCE
OF ORGANISM IN TERMS OF THE SINGLE

VARIABLE �

To illustrate the workings of the method that are a rela-
tively simple example will be studied with two particles
types and two containers connected with the tube of length l.
The umber of configurations increases exponentially with to-
tal particle number and to control the calculation the upper
limit on this number Np

* is set.
The structure of the organisms in the ROGE ensemble is

defined as follows. For each organism in the ensemble an
unique choice is made for �i� the total number of A and B
molecules, �ii� the reactivity matrix �, �iii� the catalytic ac-
tivity matrix K, �iv� the inject pattern � and, �v� the list of
tasks monitored �. For all organisms geometry is kept fixed
�e.g., the size of containers and the length of the tube con-
necting them�.

Please note that there are two symmetries in the problem,
the one that originates from the relabeling of particles, and
another one that has to do with the relabeling of containers.
Two organisms are said to be equivalent if they can be re-
lated by these symmetries. Special care is taken to eliminate
the organism that is equivalent to the one already in the list.

We start with the situation where the total number of par-
ticles Np

* =nA,1+nA,2+nB,1+nB,2 in the system equals 1. Also,
we consider only organisms with reactions A→B and B
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→A, both with the rate �. One can see that, for a given
reaction scheme, and with a constraint Np

* =1, only three
choices for � and � are possible: �1 ,�1= �A�− � �, � �− �A�; �2,
�2= �A�− � �, �B�− � �; �3, �3= �A�− � �, � �− �B�. This leads to
the three organisms o1, o2, and o3.

All organisms are such that one A particle is injected in
the container C1 and only one task is monitored. In the case
of organism o1 the goal is to synthesize one A molecule in
the container C2, in the case of o2 one B molecule should be
synthesized in C1, while in the case of o3 one B molecule
should be created in C2. The expressions for � of o1, o2, and
o3 can be found using Eqs. �24�–�26� leading to values
�2D+�� / �D�D+���, �D+2�� / ���D+���, and 1/D+1/�, re-
spectively.

The dependence of � on � /D� l2 is depicted in Fig. 4. All
three organisms achieve their tasks faster in the compact ge-
ometries since � gets smaller when l→0. o1 functions by
transporting one A particle from C1 to C2. It is intuitively
clear that this happens faster when containers are close. One
can analyze o3 in the similar way. For o2 the task can be
achieved without transport and the curve depicting � for o2
differs significantly from the ones for o1 and o3 when l→�.

The question is whether it is possible to present informa-
tion conveyed from Fig. 4 in a more compact way? To
achieve this goal it is useful to consider following quantity:

� =
��n�
��0�

�27�

where � . � denotes the Euclidean norm of the vector, �n and
�0 are given by � calculated for networklike and compact
geometries with jump rates Dn and D0 such that Dn�� and
D0�Dn, �,��. Using similar reasoning the � can be defined
for generic network having more than two containers. In
such a way one can compare the extended and compact ge-
ometries of the given fixed network structure and express a
comparison through one variable �.

In the following the � will be refereed to as the speed of a
reaction. ��1 is an indication that the organisms accomplish
tasks faster in a networklike geometry, while �1 shows
that the organism draws the most benefit from a compact
geometry. Please note, all organisms considered in Fig. 4
have �1.

VII. ROGE ENSEMBLE: CLASSIFICATION
OF THE REACTION SCHEMES USING THE SPEED

OF REACTION �

Figure 5 depicts the results of the classification of a large
number of organisms in five ROGE ensembles with Np

* =1,2,

3,4,5. Organisms are generated by loops over �, K, �, and �.
This procedure leads to ensembles with 380, 2840, 12 020,
37 920, and 99 240 organisms. After eliminating equiva-
lences one ends up with smaller numbers 95, 730, 3025,
9560, and 24 890. These numbers are hard to predict and
they have to be generated by computer.

There are no organisms in the Np
* =1 class that benefit

from the structured geometry since the histogram in panel �b�
is empty. All organisms have �1 as can be seen from panel
�a�. Only after more than one molecule appears in the sys-
tem, catalytic influences start to play the role, and organisms
that benefit from the networklike structure appear �see panels
�c� and �d� in Fig. 5�. This clearly shows that when various
reaction steps start influencing each other there is a need for
structured geometry. This is a very important finding.

The best performer in the Np
* =2 class is given in Table I,

denoted by oi,2, together with a couple of second best per-
formers denoted by oii,2. The degeneracy in � of oi,2 comes
from the fact that the same enhancement and reduction factor
is used for positive and negative catalytic influence.

One can understand intuitively why oi,2 runs faster in the
networklike geometry. We focus on the particular case of oi,2
where the goal is to synthesize two B molecules in the con-

FIG. 4. The dependence of � on � /D for o1 �dotted line�, o2

�dashed�, and o3 �solid�. All quantities plotted are dimensionless.

FIG. 5. �Color online� Classification of organisms in the ROGE
ensemble. � was calculated with Dn=1 s−1, D0=3125 s−1, �
=1 s−1, and �=100. Panels �a�, �c�, �e�, �g�, and �i� are histograms
that depict groups with similar reaction speed �. There are 100
classes of width 0.01 for � from 1 to 2. For �1, instead of �, the
value obtained from ����=2−ln 2/ ln�1+�� is used. The function �
monotonically grows with � and maps infinite interval �1,�� onto
the finite one �1,2�. In addition, this particular form for � reveals
more details in the region near �=1. Panels �b�, �d�, �f�, �h�, and �j�
are discrete spectra �no histogram� for region �� �0,1�. Panels in
the same row have same value for the total number of particles in
the system Np

*: �a� and �b� Np
* =1, �c� and �d� Np

* =2, �e� and �f�
Np

* =3, �g� and �h� Np
* =4, �i� and �j� Np

* =5. A negative value for the
number of organisms indicates that an organism with a particular
value of � contains at least one reaction that is inhibited.
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tainer C1. Due to the initial presence of molecule A in con-
tainer C1, it is very likely that the B molecule will be con-
verted into an A molecule, when A and B meet in the same
container. Once there are two A molecules in the system the
trouble starts. Even if the reaction A→B happens, and
chance for this is really small due to the negative catalytic
influence of A on such reaction, B will be converted back to
A immediately �due to the positive catalytic influence of an-
other A molecule on the B→A reaction�. In principle, con-
version of AB into 2B has no chance occurring in a reason-
able time when there is only one container. The antagonistic
catalytic influences just discussed are best handled in a net-
worklike geometry. In such a case the synthesis of the mol-
ecules can be done in separate containers. With two contain-
ers there is always a chance that the antagonistic influences
will be reduced. For example, in this case the processes A
→B can happen fast given that damage inflicting an A mol-
ecule is in another container.

Also, it is naive to think that organisms containing reac-
tions with solely inhibitory catalytic influence perform best
in a networklike structure. This is clearly not the case. The
winning organisms oi,2 are constructed from one reaction
with positive B→+AA and another reaction A→−AB with a
negative catalytic influence. Furthermore, Fig. 5 shows
plenty of other cases. Actually, the completely opposite is
possible. There are many organisms in the histogram plot
with �1 that contain at least one reaction with a negative
catalytic influence and these organisms perform best in a
compact geometry.

The best performer in the Np
* =3 class is given in Table I,

denoted by oi,3. A couple of the second best performers are
also shown and labeled oii,3. When more than two molecules
appear in the system, a completely different organism ap-
pears as the winner. There is a sharp transition in the char-
acter of winners. Both the reaction type and inject and task

patterns are different in oi,3 and oi,2. The winners in classes
Np

* =4 and Np
* =5 are similar to oi,3.

Table I shows how difficult it is to have any intuition
about the structure of best performers. For example, the in-
ject patterns of oi,3, oi,4, and oi,5 form a list �A�− �2A�, �A�
− �3A�, and �2A�− �3A� �surprisingly not �A�− �4A��. Also,
the last row in Table I contains organisms with a slightly
modified inject or task patterns where the original form is
taken from the best performer. Comparing oi,3 and o*,3, oi,4,
and o*,4, and finally oi,5 with o*,5 shows that small alternation
in the task pattern, obtained by moving one B particle from
C2 into C1, deteriorates the performance leading to �1.
Another example, can be obtained from comparison of oi,3
with o*,2. Both the inject and task patterns have been altered
in oi,3. This change is motivated by a sequence of organisms
in the first row of Table I, when read from right to left. A
priori, the organism o*,2 could be considered to have ��1,
however, this is not the case. The actual value for �=418 is
�lot� larger than 1.

VIII. DISCUSSION

We introduced what we might call a generic model for the
study of chemical reactions in structured spaces, based on a
simple way of incorporating interplay between transport,
chemical reactions, and geometry. A number of different
chemical reactions were studied and their performance com-
pared. To compare organisms we used a measure of relative
performance expressed through the single variable �, the ra-
tio of the average execution times in stretched and compact
geometries.

To calculate � is not easy since the dynamics is stochastic.
The computer simulation is a straightforward way to obtain
�. However, one needs unrealistically large number of runs
��100 000� in order to gain reasonable accuracy in � for one

TABLE I. List of the best performers in the ROGE ensemble �first row�. A couple of second best performers are also shown �second row�.
The last row contains organisms that are obtained by slightly perturbing winners from the first row.

Np
* =2 Np

* =3 Np
* =4 Np

* =5

�oi,2�

A→
−A

B ,B→
+A

A�R1�
�= �A�− �B�

�= �2B�− � � or � �− �2B�
�n= �18.55�− � �
�0= �50.91�− � �

�=0.364

�oi,3�

A→
+A

B�R3�
�= �A�− �2A�
�= �2A�− �B�

�n= �0.242�− �0.0355�
�0= �0.000219�− �0.979�

�=0.250

�oi,4�

A→
+A

B�R3�
�= �A�− �3A�
�= �3A�− �B�

�n= �0.021�− �0.01�
�0= �0.00045�− �0.95�

�=0.0248

�oi,5�

A→
+A

B�R3�
�= �2A�− �3A�
�= �4A�− �B�

�n= �0.014�− �0.00063�
�0= �0.010�− �0.91�

�=0.0192

�oii,2�

A→
−B

B ,B→
+A

A�R2�
�= �A�− �B� ,�= �2B�− � �

or � �− �2B� ,�=0.368
R1 ,�= � �− �2A�,

�= �2B�− � � ,�=0.386 R3 ,�= � �− �2A�,
�= �A�− �B� ,�=0.500

�oii,3�
R3 ,�= � �− �3A�

�= �2A�− �B� ,�=0.268;
R1 ,�= �2A�− �B�

�= �A�− �2B�
R2 ,�= �2A�− �B�

�= �2B�− �A� or � �− �A ,2B�
��0.386

�oii,4�
R3 ,�= �2A�− �2A�

�= �3A�− �B� ,�=0.0279;
R3 ,�= � �− �4A�

�= �3A�− �B� ,�=0.0358

�oii,5�
R3 ,�= �2A�− �3A�

�= �4A ,B�− � � ,�=0.0219;
R3 ,�= �A�− �4A�

�= �4A�− �B� ,�=0.0305

�o*,2�
R1 or R3 ,�= � �− �2A�

�= �2A�− � � ,�=3249 or 418;

�o*,3�
R3 ,�= �A�− �2A�

�= �3A�− � � ,�=21.8

�o*,4�
R3 ,�= �A�− �3A�

�= �4A�− � � ,�=17.5

�o*,5�
R3 ,�= �2A�− �3A�

�= �5A�− � � ,�=10.4
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organism. An alternative method was suggested, where aver-
age times are calculated using the concept of the first passage
time. This method is exact and much more efficient compu-
tationally and should be used when possible.

Which types of chemical reactions draw the most benefit
from structured spaces? In an attempt to answer this question
two schemes were formulated ROGE and GORE, while ex-
amples were only given for ROGE. The variable � was used
to classify the performance of various organisms in the ge-
ometry consisting of two containers connected by the tube.
The results of the analysis can be found in Fig. 5 and Table I
and two main findings are as follows.

�1� The interplay between the geometry and reaction
scheme becomes important only when the reaction steps start
influencing each other. The reaction pathways containing an-
tagonistic reaction steps that slow down the production of
the final product require networklike geometry to run fast.
The dangerous reaction steps have to be isolated in the sepa-
rate regions of space, and additional time has to be spent to
move reactants there. However, the overall reaction time
might get shorter since the other reactions speed up.

�2� Intuition does not help much and one really has to do
numerical analysis in order to extract the best performer in a
given class. The whole triple consisting of the reaction, inject
pattern, and task pattern has to be considered simultaneously.
There are a couple of reasons for this. First, the performance
is extremely sensitive to the details of the inject and task
patterns. Second, antagonistic catalytic influences are hard to
identify since the role of the reactions with positive and
negative �inhibitory� catalytic influence is symmetric.

The method suggested and the simple examples studied
provide insights relevant for a number of topics ranging from
the understanding of physiochemical processes in the living
cell �33–36,39–49�, biological evolution �50–56�, toward
chemical engineering and biotechnology �19–25�.

�i� The moment method is a quantitative scheme that can
be used to investigate temporal and spatial synchronization
of the chemical reactions in the living cell �33,39�. These are
hotly debated issues.

�ii� This study suggest another way of approaching cy-
toarchitecture �35,36�. For example, it is assumed that the
inner space of the mitochondrion is structured in order to
attain a higher surface of the inner membrane. The present
study suggests the possibility of an additional mechanism,
the presence of antagonistic catalytic influences.

�iii� Fairly little has been done in understanding the role
of geometry and spatial organization played in the process of
biological evolution. There is already some pioneering work
in this area �52–56�. The present study could impact some
progress in this direction.

�iv� There is a tendency within chemical engineering to
move away from bulk geometry toward structured spaces.
The interesting experimental work on these topics can be
found in Refs. �19–25�. It is possible that, among other
things, the structures studied in these experiments will find
its use as a device to efficiently run reactions with antago-
nistic catalytic influences. The method suggested could be
used to identify interesting reactions.

The setup suggested here is generic. There are many pos-
sible ways of extending the present the analysis. For ex-
ample, at present the focus is on a small number of particles
and stochastic dynamics. When the number of particles in the
system increases the present scheme cannot be carried out. In
such a case the mean field description becomes valid. The
present analysis could be easily repeated in such a setup. The
transport between the containers can be treated in a better
way. Instead of focusing on the average execution time � one
can easily look at the noise � or the combination of the two.
The GORE ensemble should be explored in a lot more detail.
These issues will be addressed in future work.
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